After some remarks on my comment to Dr Kaku's (a popular figure from bigthink.com) overpopularization of physics one more comment on the wave-properties of an electron seems appropriate:

There is a famous experiment illustrating the consequences of the wave-description for the probability to find an electron at a given point in space.

If an electron-source is placed in front of a metal-sheet with two narrow slits, a recording-device behind this screen would detect a distribution of incoming electrons that is identical to an interference-pattern of waves passing through the double slit (as would be seen when shining coherent, monochromatic light (a laser produces this kind of light) on the two slits).

This interference-pattern shows up no matter how low the rate of electrons coming through. Even if only one single electron per hour would pass through the slits, there would, finally, be a distribution of detected electrons given by the well-known interference-pattern.

This experiment clearly demonstrates the wave-characteristics of the electron - or more precisely, it demonstrates that the probability to find an electron at a given point in space and time is given by a wave-function. It is this probability-distribution that passes the double-slit and, quite logically, results in an interference-pattern on the other side - giving the resulting probability-distribution for the position of an electron behind the double-slit. So the electron *is* no wave. It's position is given by probabilities *that are described* by a wave-function.